Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
JMIR Public Health Surveill ; 7(4): e26460, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-2141312

ABSTRACT

The enormous pressure of the increasing case numbers experienced during the COVID-19 pandemic has given rise to a variety of novel digital systems designed to provide solutions to unprecedented challenges in public health. The field of algorithmic contact tracing, in particular, an area of research that had previously received limited attention, has moved into the spotlight as a crucial factor in containing the pandemic. The use of digital tools to enable more robust and expedited contact tracing and notification, while maintaining privacy and trust in the data generated, is viewed as key to identifying chains of transmission and close contacts, and, consequently, to enabling effective case investigations. Scaling these tools has never been more critical, as global case numbers have exceeded 100 million, as many asymptomatic patients remain undetected, and as COVID-19 variants begin to emerge around the world. In this context, there is increasing attention on blockchain technology as a part of systems for enhanced digital algorithmic contact tracing and reporting. By analyzing the literature that has emerged from this trend, the common characteristics of the designs proposed become apparent. An archetypal system architecture can be derived, taking these characteristics into consideration. However, assessing the utility of this architecture using a recognized evaluation framework shows that the added benefits and features of blockchain technology do not provide significant advantages over conventional centralized systems for algorithmic contact tracing and reporting. From our study, it, therefore, seems that blockchain technology may provide a more significant benefit in other areas of public health beyond contact tracing.


Subject(s)
Algorithms , Blockchain , Contact Tracing , Coronavirus Infections , Privacy , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Female , Humans , Male , Public Health
2.
Blockchain Healthc Today ; 52022.
Article in English | MEDLINE | ID: covidwho-2026455

ABSTRACT

Each year, Blockchain and Healthcare Today reaches out to journal board members, annual ConV2X Symposium speakers, and ecosystem subject matter experts to share their near-term views and perspectives for blockchain technology advances in healthcare. This article presents insights into where authors anticipate market opportunities and where gaps exist that should be addressed for regional and global collaboration, governance, and efficiency for the year 2022.

3.
JMIR Form Res ; 5(10): e33113, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1496862

ABSTRACT

BACKGROUND: Increased digitization of health care might challenge some of the trust functions that are established in a traditional health care system. We have, with the concept of VerifyMed, developed a decentralized service for work history and competence verification, as a means to increase trust in the virtual interaction between a patient and a caregiver, mitigate administrative burden, and provide patient-reported outcomes seamlessly for health professionals. OBJECTIVE: This research aimed to validate the use case of a decentralized credentials service for health care professionals in Norway. We also aimed to evaluate the proof-of-concept of VerifyMed, a blockchain-based credential service for health care professionals. METHODS: A qualitative approach was applied with data collection through 9 semistructured interviews and 2 focus groups (one with 4 participants and the other with 5 participants). The System Usability Scale (SUS) was used as a part of the interviews. Data were analyzed through the principles of systematic text condensation. The recruitment of participants ended when it was concluded that the data had reached saturation. RESULTS: The following 5 themes were identified from the interviews and focus groups: (1) the need for aggregated storage of work- and study-related verification, (2) trust in a virtual health care environment, (3) the potential use of patient feedback, (4) trust in blockchain technology, and (5) improvements of the VerifyMed concept. The SUS questionnaire gave a score of 69.7. CONCLUSIONS: This study has validated the need for a decentralized system where health care professionals can control their credentials and, potentially, their reputation. Future work should update the VerifyMed system according to this input. We concluded that a decentralized system for the storage of work-related verifiable credentials could increase trust in a virtualized health care system.

SELECTION OF CITATIONS
SEARCH DETAIL